Lee Academy Analytic Rubric

Physics Stream Crossing Project

Name: _____

Date: _____

Class : _____

Marking Period: _____

NGSS	Criteria	Wt	4	3	2	1	Value
			Exceeds	Meets	Partially Meets	Does not Meet	
			Standard	standard	Standard	Standard	
	Background	40%	Student re-	Student re-	Student re-	Student re-	
			searches and in-	searches and ex-	searches and par-	searches and de-	
			sightfully explains	plains factors that	tially explains fac-	scribes factors	
			factors that af-	affect stream	tors that affect	that affect	
			fect stream	crossing design	stream crossing	stream crossing	
			crossing design	and how forces	design and how	design and how	
			and how forces	and the transfer	forces and the	forces and the	
			and the transfer	of momentum im-	transfer of mo-	transfer of mo-	
			of momentum im-	pact stream	mentum impact	mentum impact	
HS-ETS1-2			pact stream	crossings.	stream crossings.	stream crossings,	
Design a solu-			crossings.			with several gaps	
tion to a com- plex real-world						and/misunder-	
			Student provides	Student provides	Student provides	standings. Student provides	
problem by breaking it	Procedure	40%	a comprehensive	a comprehensive	a description of	a description of	
down into			description of how	description of how	how each crossing	how each crossing	
smaller, more			each crossing was	each crossing was	was built, but pro-	was built, but pro-	
manageable			built. Procedure	built. Procedure	cedure is missing	cedure is limited	
problems that			demonstrates cre-	demonstrates	some steps and/or	and/or does not	
can be solved			ative problem	problem solving.	demonstrates lim-	demonstrate prob-	
through engi-			solving.	······································	ited problem solv-	lem solving.	
neering.			5		ing.		
	Blue Print	20%	Student provides	Student provides	Student provides	Student provides	
			detailed blue	blue prints for	blue prints for	limited blue prints	
			prints for each	each crossing with	each crossing but	for each crossing	
			crossing with all	all forces acting	some forces are	and/or several	
			forces acting on	on each crossing	not	forces are not	
			each crossing ac-	accurately labeled.	labeled.	labeled.	
			curately labeled.				

HS-ETS1-3. Evaluate a so- lution to a com- plex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, in- cluding cost, safety, relia- bility, and aes- thetics as well as possible social, cultural, and environ- mental impacts.	Bridge Structure and Testing	40%	Models are structurally sound, meet materials requirements, and are within required dimensions. Models demonstrate innovative design.	Models are structurally sound, meet materials requirements, and are within required dimensions.	Models are structurally sound, but do not meet materials requirements, and/or are not within required dimensions.	Models are not structurally sound, do not meet materials requirements, and/or are not within required dimensions.	
	Hypothesis	20%	Student predicts which model will support the great- est load while hav- ing the least im- pact on stream- flow and erosion and demonstrates in-depth analysis with supporting statements to jus- tify prediction.	Student predicts which model will support the great- est load while hav- ing the least im- pact on stream- flow and erosion and demonstrates analysis with sup- porting state- ments to justify prediction.	Student predicts which model will support the great- est load while hav- ing the least im- pact on stream- flow and erosion and demonstrates limited analysis with supporting statements to jus- tify prediction.	Student provides limited prediction of which model will support the great- est load while hav- ing the least im- pact on stream- flow and erosion and/or does not provide supporting statements to jus- tify prediction	
	Conclusion	40%	Student provides insightful evaluation of which model was most successful at supporting a load and withstanding erosion while being the most cost effective. Student discusses and analyzes sources of error, how to improve crossings, and what was learned from this project	Student provides evaluation of which model was most successful at supporting a load and withstanding erosion while being the most cost effective. Student discusses sources of error, how to improve crossings, and what was learned from this project.	Student provides partial evaluation of which model was most successful at supporting a load and withstanding erosion while being the most cost effective. Student provides incomplete discussion of sources of error, how to improve crossings, and what was learned from this project.	Student provides limited evaluation of which model was most successful at supporting a load and withstanding erosion while being the most cost effective. Student provides limited discussion of sources of error, how to improve crossings, and what was learned from this project.	
MP.2 Reason abstractly and quantitatively.	Results	100 %	Student demon- strates logical problem solving while accurately showing all mea- surements and cal- culations needed to determine the net force on, transfer of mo- mentum to, and effects of erosion from each model. Units are accu- rately provided. Data is well orga- nized.	Student accu- rately shows all measurements and calculations needed to deter- mine the net force on, transfer of momentum to, and effects of erosion from each model. Units are accu- rately provided.	Student shows all measurements and calculations needed to deter- mine the net force on, transfer of momentum to, and effects of erosion from each model with some errors and/or units are not accurately provided.	Student shows some measure- ments and calcula- tions needed to determine the net force on, transfer of momentum to, and effects of erosion from each model with several errors. Units are not accurately provided.	

	<u> </u>		Final Score for	Each Standard HS-ETS1-2:	
				HS-ETS1-3:	
				MP.2:	

Teacher's Comments

*When converting to a traditional numeric grade, HS-ETS1-2 and HS-ETS1-3 are weighted twice and MP.2 is weighted once.